

- 1. Subject name / subject module: Energy Harvesting
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Szychta Elżbieta, prof. dr hab. inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

	Teaching activities with the tutor																			
Mode of study		Form of classes To														Total				
		sow	ECTS	Laboratory work	SOW	ECTS		sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				33	42	2														_
Part-time studies						3														3
Credit rigor				Graded	assignr	nent														

6. Student workload – ECTS credits balance:

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	-
Participation in laboratory classes	33
Preparation to laboratory classes	16
Preparation of homeworks	10
Independent study of the subject	16
Participation in an exam / graded assignment	-
Total student workload (TSW)	75
ECTS credits	3
* Student's workload related to trainings	75
Student's workload in classes requiring direct participation of academic teachers	33

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

- Recommended admission requirements none.
- Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

	Specific learning outcomes for the subject		Tooching	Methods for testing of (checking, assessing) learning outcomes					
Outcome symbol	Outcome description	Form	method						
	Knowledge								
к_w05	The student has basic knowledge in the field of automation, electronics and electrical engineering, necessary to understand at an advanced level the complex dependencies of energy harvesting systems and to apply this knowledge in practice through t	Laboratory work	Inquiry methods	Student learning activities					
Skills									
к_008	The student is able to plan and carry out experiments, including measurements and computer simulations, interpret the obtained results and draw conclusions - with particular emphasis on modern IT tools such as LabView or Matlab, typical for an engineer	Laboratory work	Inquiry methods	Student learning activities					

9. Assessment rules / criteria for each form of education and individual grades:

0% - 50%	ndst	db			
51% - 70%	dst	87% - 93%	db+		
71% - 79%	dst+	94% - 100%	bdb		

Activity	Grades	Calculation	To Final	
Lab reports	dst, db, bdb(3,4,5)	arithmetic mean (5,3,4)* 50%	2	
Activity druing classes	dst, db, bdb(3,4,5)	arithmetic mean (5,3,4)* 20%	0,8	
Homeworks	dst, db, bdb(3,4,)	arithmetic mean (5,3,4) * 20%	0,8	
Attendance	on 80% of all classes	80% * 5 -> 4 * 10%	0,4	
Final result			4,0	
Grade		4,0/5 = 80%	db (4.0)	

 The learning contents with the form of the class activities on which they are carried out: (Laboratory work)

1. Introduction to energy harvesting: Power supply system for electronic devices, Energy vs power,

Piezoelectric transducers., Thermo generators.

2. Solar cells, Fuel cells, Power management,

3. Energy storage: Battery basics, Battery chemistries, Battery specifications, Battery charging, Battery selection

for application requirements., Ultracapacitors, Numerical simulation of an electrical energy storage system;

4. Application examples: Power sources for wireless sensor networks, Energy harvesting for ID tags, Battery-

free wireless light switch, Energy harvesting for medical applications, Smart clothes.

- **11.** Required teaching aids:
 - a. Lecture multimedia projector.
 - b. Laboratory classes specialist laboratory.
 - c. Exercises a room adapted for conducting classes in the form of exercises / workshops, multimedia projector.

12. Literature:

a. Basic literature:

1. Shashank PriyaDaniel J. Inman: "Energy Harvesting Technologies" Springer

2. Halil Berberoglu: "Photobiological Solar Energy Harvest" Submitted: February 11th 2011, Reviewed: September 13th 2011, Published: February 15th 2012

b. Supplementary literature:

1. Digital Transformation Monitor "Energy harvesting to power the rise of the Internet of Things" European Comission July 2017

2. Sorensen B.: Renewable energy conversion, transmission and storage. Elsevier, USA, 2007.

Subject programme

c. Internet sources:

https://www.nipslab.org/files/Wisepower_SummerSchool_MicroEnergy2017_building.pdf

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	Szychta Elżbieta, prof. dr hab. inż.
3. Training	
4. Project classes	
5. Workshop classes	
6. Simulation game	
7. Language classes	